Keywords from previous research
Table 1 presents keywords from previous research which has been valuable for this PhD-study. The overview does not attempt to make an exhaustive list of research, rather an insight. The majority of the publications examples is based on the reference-list from the four papers or this thesis. The Keywords provide a short presentation, while Publications refers to research relevant for this PhD-study. The rows are partly divided after thematic content; however, multiple overlaps exist.
Table 1. Previous research relevant to this PhD-study.
Keywords | Publications (examples) |
Philosophy of CME, socio-political issues, critical citizenship, formatting power of mathematics, mathemacy, reflective knowing, critique, democratic competencies, landscape of investigation. | Alrø and Skovsmose (2002); Greer and Skovsmose (2012); Ravn and Skovsmose (2019a, 2019b); Skovsmose (1990, 1992, 1994, 1998, 2000, 2006, 2008a, 2008b, 2011a, 2011b, 2012a, 2012b, 2014a, 2014b, 2015, 2016); Skovsmose and Greer (2012); Skovsmose, Valero, and Christensen (2009) |
Social justice, ethics, values, empowerment, social outcomes of ME, philosophy, socio-political, ethical, response-able, ethical responsible ME. | Abtahi, Gøtze, Steffensen, Hauge, and Barwell (2017); Atweh (2004, 2012); Atweh and Brady (2009); Ernest (2002, 2007, 2009a, 2009b, 2010, 2012, 2015) |
Critical dialogues in ME, IQ-model, inquiry-based dialogues, critical mathematical argumentation, agency, socio-political issues, critical citizens. | Alrø and Johnsen-Høines (2010, 2012); Alrø and Skovsmose (2002, 2006); Hana, Hansen, Johnsen-Høines, Lilland, and Rangnes (2013); Herheim (2012); Herheim and Rangnes (2015, 2016); Høines, Alrø, and Fosse (2012); Høines and Herheim (2016); Rangnes and Herheim (2019) |
Socio-political ME, communication and dialogues, instrumental and relation learning and understanding, power, pedagogy of dialogue and conflict, socio-political dimensions of ME, controversies. | Mellin-Olsen (1981, 1987, 1991, 1993); Mellin-Olsen and Lindén (1996); Skemp (2006); Steffensen and Rangnes (2019); Valero (2009); Valero, Andrade-Molina, and Montecino (2015); Valero and Stentoft (2010); Valero and Zevenbergen (2004); Vithal (2003, 2004, 2008); Vithal and Skovsmose (2012) |
CME and sustainability, climate change, post-normal science, uncertainty, critical reflections, critical citizens, extended peer community. | Abtahi et al. (2017); Barwell (2013, 2018); Barwell and Suurtamm (2011); Hauge (2013, 2016a, 2016b); Hauge and Barwell (2015, 2017); Hauge et al. (2015); Yasukawa (2007); Yasukawa and Brown (2012); Yasukawa, Skovsmose, and Ravn (2012) |
Critical mathematical (and democratic) competencies, modelling, mathematical discussions, applications of mathematics to the real world, mathematical literacy, numeracy, curricula. | Alrø and Johnsen-Høines (2016); Blomhøj (1992, 2003); Hansen and Hana (2012); Jablonka (2003, 2015); Kacerja et al. (2017); Kennedy (2018); Sikunder (2015) |
Social justice, ethnomathematics, practical goals, criticalmathematical numeracy, socio-political turn, politicizing ME, theories and philosophies of ME. | D’Ambrosio (2003, 2008, 2010, 2015); Frankenstein (1998, 2010a, 2010b); Gutiérrez (2013); Sriraman and English (2010); Sriraman, Ernest, and Greer (2009); Sriraman, Roscoe, and English (2010) |
Social justice, reading and writing the wor(l)d with mathematics, critical mathematics discourse. | Brantlinger (2011, 2014); Gutstein (2003, 2006, 2012) |
Critical literacy, critical consciousness, education for hope, critical reflection, discussion as a way of teaching. | Brookfield (2009); Brookfield and Preskill (2005); Freire (1992, 1998, 2007); Freire and Macedo (2005) |
Controversies, democratic power of discussions, political classroom, climate change, controversies, extended peer communities. | Hess (2005, 2009); Hess and McAvoy (2009); Hess and McAvoy (2014); Hulme (2009, 2010) |
Citizenship, education in crisis, war on youth, teachers as transformative intellectuals, schooling as democracy, democracy more than elections. | Banks (2008); Chomsky (2003); Cogan, Morris, and Print (2013); Dewey (2011); Giroux (1989, 2008, 2011, 2013); Marshall (1950) |
STEM integration, transdisciplinary, mathematics role in STEM, responsive ME, critical issues. | English (2015, 2016a, 2016b, 2017); Greer (2009a, 2009b, 2018); Greer and Skovsmose (2012); Jorgensen and Larkin (2018); Larkin and Jorgensen (2018); Mukhopadhyay and Greer (2015) |
Interdisciplinarity, real-world problem, problem-solving, socio-political, critical approach in STEM, ecojustice, CME, philosophy of STEM, integrated approaches. | Bybee (2013); Chesky and Wolfmeyer (2015); Jurdak (2016, 2018); Jurdak and Vithal (2018); Wolfmeyer (2013, 2018); Wolfmeyer and Lupinacci (2017); Wolfmeyer, Lupinacci, and Chesky (2017, 2018) |
Interdisciplinarity, 21st skills, responsible citizenship, science education, post-normal science, controversial topics, development of teachers, teachers background, junior STEM education. | Geiger (2019); Gray and Bryce (2006); Gray, Colucci-Gray, and Camino (2012); Jorgensen and Larkin (2018); Larkin and Jorgensen (2018); Maaß, Geiger, Ariza, and Goos (2019) |
Climate change, complex problems, uncertainty, values, climate modelling, scientific consensus. | Lloyd (2018); Lloyd and Winsberg (2018); Oreskes (2018) |
Post-normal science, complex challenges, extended peer community, lived experience, socio-scientific issues in science education, teachers’ development, sustainability, transdisciplinary. | Abbott and Wilson (2014); Colucci-Gray, Perazzone, Dodman, and Camino (2013); Funtowicz and Ravetz (1993, 1999, 2003, 2008); Funtowicz and Strand (2011); Gray and Bryce (2006); Ravetz (2007, 2011) |
References
Abbott, D., & Wilson, G. (2014). Climate change: Lived experience, policy and public action. International journal of climate change strategies and management, 6(1), 5-18.
Abtahi, Y., Gøtze, P., Steffensen, L., Hauge, K. H., & Barwell, R. (2017). Teaching climate change in mathematics classroom: An ethical responsibility. Philosophy of mathematics education journal, 32, 1-18.
Alrø, H., & Johnsen-Høines, M. (2010). Critical dialogue in mathematics education. In H. Alrø, O. Ravn, & P. Valero (Eds.), Critical Mathematics Education: Past, Present, and Future (pp. 11-21). Rotterdam: Sense.
Alrø, H., & Johnsen-Høines, M. (2012). Inquiry-without posing questions? The Mathematics Enthusiast, 9(3), 253-270.
Alrø, H., & Johnsen-Høines, M. (2016). Critical mathematics education in the context of “real-life education”. In P. Ernest, B. Sriraman, & N. Ernest (Eds.), Critical mathematics education: Theory, praxis, and reality (pp. 227-252). Charlotte, NC: Information Age Publishing.
Alrø, H., & Skovsmose, O. (2002). Dialogue and learning in mathematics education. Intention, reflection, critique. Dordrecht, The Netherlands: Kluwer Academic.
Alrø, H., & Skovsmose, O. (2006). Læring mellem dialog, intention, refleksion og kritik. In O. Skovsmose & M. Blomhøj (Eds.), Kunne det tænkes? – om matematiklæring. Albertslund: Malling Beck.
Atweh, B. (2004). Understanding for changing and changing for understanding. In P. Valero & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology (pp. 187-205). Boston, MA: Springer US.
Atweh, B. (2012). Mathematics education and democratic participation between the critical and the ethical: A socially response-able approach. In O. Skovsmose & B. Greer (Eds.), Opening the Cage (pp. 325-341). Rotterdam: Sense.
Atweh, B., & Brady, K. (2009). Socially response-able mathematics education: Implications of an ethical approach. EURASIA Journal of Mathematics, Science & Technology Education, 5(3), 267-276.
Banks, J. A. (2008). Diversity, group identity, and citizenship education in a global age. Educational Researcher, 37(3), 129-139. doi:10.3102/0013189×08317501
Barwell, R. (2013). The mathematical formatting of climate change: Critical mathematics education and post-normal science. Research in Mathematics Education, 15(1), 1-16. doi:10.1080/14794802.2012.756633
Barwell, R. (2018). Some thoughts on a mathematics education for environmental sustainability. In P. Ernest (Ed.), The philosophy of mathematics education today (pp. 145-160). Cham, Switzerland: Springer International.
Barwell, R., & Suurtamm, C. (2011). Climate change and mathematics education: Making the invisible visible. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the 7 th congress of the European society for research in mathematics education (pp. 1409-1419). Poland: University of Rzeszñw.
Blomhøj, M. (1992). Modellering i den elementære matematikundervisning – et didaktisk problemfelt. København: Danmarks Lærerhøjskole, Matematisk Institut.
Blomhøj, M. (2003). Modellering som undervisningsform. In O. Skovsmose, M. Blomhøj, & H. Alrø (Eds.), Kan det virkelig passe? Om matematiklæring. København: L&R Uddannelse Forlag Malling Beck.
Brantlinger, A. (2011). Rethinking critical mathematics: A comparative analysis of critical, reform, and traditional geometry instructional texts. An International Journal, 78(3), 395-411. doi:10.1007/s10649-011-9331-4
Brantlinger, A. (2014). Critical mathematics discourse in a high school classroom: Examining patterns of student engagement and resistance. Educational Studies in Mathematics, 85(2), 201-220.
Brookfield, S. (2009). The concept of critical reflection: Promises and contradictions. European Journal of Social Work, 12(3), 293-304. doi:10.1080/13691450902945215
Brookfield, S., & Preskill, S. (2005). Discussion as a way of teaching: Tools and techniques for democratic classrooms. San Francisco: John Wiley & Sons.
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, Virginia: National Science Teachers Association.
Chesky, N. Z., & Wolfmeyer, M. (2015). Philosophy of STEM education: A critical investigation. United States: Springer Nature.
Chomsky, N. (2003). Chomsky on democracy & education. New York: Routledge Falmer.
Cogan, J. L., Morris, P., & Print, M. (2013). Civic education in the Asia-Pacific region. An introduction. In J. L. Cogan, P. Morris, & M. Print (Eds.), Civic education in the Asia-Pacific region: Case studies across six societies (pp. 1-22). London: Routledge.
Colucci-Gray, L., Perazzone, A., Dodman, M., & Camino, E. (2013). Science education for sustainability, epistemological reflections and educational practices: From natural sciences to trans-disciplinarity. Cultural Studies of Science Education, 8(1), 127-183. Retrieved from http://dx.doi.org/10.1007/s11422-012-9405-3
D’Ambrosio, U. (2003). The role of mathematics in building a democratic society. In B. L. Madison & L. A. Steen (Eds.), Quantitative literacy: Why numeracy matters for schools and colleges (pp. 235–238). Princeton, NJ: The National Council on Education and the Disciplines.
D’Ambrosio, U. (2008). Peace, social justice and ethnomathematics. In B. Sriraman (Ed.), International perspectives on social justice in mathematics education (pp. 37-50). Charlotte, NC: Information Age.
D’Ambrosio, U. (2010). Mathematics education and survival with dignity. In H. Alrø, O. Ravn, & P. Valero (Eds.), Critical Mathematics Education: Past, Present and Future (pp. 51-64). Rotterdam: Sense.
D’Ambrosio, U. (2015). From mathematics education and society to mathematics education and a sustainable civilization: A threat, an appeal, and a proposal. In S. Mukhopadhyay & B. Greer (Eds.), Proceedings of the eighth international mathematics education and society conference (Vol. 1, pp. 19-30). Portland, Oregon, USA: MES8.
Dewey, J. (2011). Democracy and education. Milton Keynes UK: Simon & Brown.
English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. Paper presented at the Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, PME, Hobart, Tasmania.
English, L. D. (2016a). Advancing Mathematics Education Research Within a STEM Environment. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K. Fry (Eds.), Research in Mathematics Education in Australasia 2012-2015 (pp. 353-371). Singapore: Springer Singapore.
English, L. D. (2016b). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 1-8. doi:10.1186/s40594-016-0036-1
English, L. D. (2017). Advancing Elementary and Middle School STEM Education. International Journal of Science and Mathematics Education, 15(1), 5-24. doi:10.1007/s10763-017-9802-x
Ernest, P. (2002). Empowerment in mathematics education. Philosophy of mathematics education journal, 15(1), 1-16.
Ernest, P. (2007). The philosophy of mathematics, values and keralese mathematics. The Montana Mathematics Enthusiast, 4(2), 174-187.
Ernest, P. (2009a). The philosophy of mathematics, values and keralese mathematics & values and the social responsibility of mathematics. In P. Ernest, B. Greer, & B. Sriraman (Eds.), Critical issues in mathematics education (Vol. 6). Charlotte, N.C: Information Age Publishing.
Ernest, P. (2009b). Values and the social responsibility of mathematics. In P. Ernest, B. Greer, & B. Sriraman (Eds.), Critical issues in mathematics education (pp. 207-216). Charlotte, NC: Information Age Publishing.
Ernest, P. (2010). The scope and limits of critical mathematics education. In H. Alrø, O. Ravn, & P. Valero (Eds.), Critical mathematics education: Past, present and future: Festschrift for Ole Skovsmose (pp. 65-87). Rotterdam, The Netherlands: Sense.
Ernest, P. (2012). What is our first philosophy in mathematics education? For the Learning of Mathematics, 32(3), 8-14.
Ernest, P. (2015). The social outcomes of school mathematics: Standard, unintended or visionary? International Journal of Education in Mathematics, Science and Technology, 3(3), 187-192.
Frankenstein, M. (1998). Reading the World with Maths: Goals for a Criticalmathematical Literacy Curriculum. In E. Lee, D. Menkart, & M. Okazawa-Rey (Eds.), Beyond heroes and holidays: A practical guide to K-12 anti-racist, multicultural education and staff development (pp. 306-313). Washington D.C.: Network af Educators in the Americas.
Frankenstein, M. (2010a). Critical mathematics education: An application of Paulo Freire’s epistemology. Philosophy of mathematics education journal, 25, 1-24.
Frankenstein, M. (2010b). Developing criticalmathematical numeracy through real real-life word problems. In U. Gellert, E. Jablonka, & C. Morgan (Eds.), Proceedings of the sixth international mathematics education and society conference (Vol. 1, pp. 248-257). Berlin, Germany: Freie Universität Berlin.
Freire, P. (1992). Pedagogy of hope Chippenham: Continuum Publishing Company.
Freire, P. (1998). Reprint: Cultural action for freedom. Harvard Educational Review, 68 (4), 476-522. doi:10.17763/haer.68.4.656ku47213445042
Freire, P. (2007). Education for critical consciousness. London, England: Continuum.
Freire, P., & Macedo, D. (2005). Literacy: Reading the word and the world. Great Britain: Taylor & Francis.
Funtowicz, S., & Ravetz, J. (1993). Science for the post-normal age. Futures, 25(7), 739-755. Retrieved from http://www.sciencedirect.com/science/article/pii/001632879390022L
Funtowicz, S., & Ravetz, J. (1999). Post-normal science – an insight now maturing. Futures, 31(7), 641-646.
Funtowicz, S., & Ravetz, J. (2003). Post-normal science. In International Society for Ecological Economics (Ed.), Online Encyclopedia of Ecological Economics. Retrieved from http://isecoeco.org/pdf/pstnormsc.pdf
Funtowicz, S., & Ravetz, J. (2008). Values and uncertainties. In G. H. Hadorn, H. Hoffmann-Riem, S. Biber-Klemm, W. Grossenbacher-Mansuy, D. Joye, C. Pohl, U. Wiesmann, & E. Zemp (Eds.), Handbook of transdisciplinary research (pp. 361-368). Dordrecht, Netherlands: Springer Netherlands.
Funtowicz, S., & Strand, R. (2011). Change and commitment: Beyond risk and responsibility. Journal of Risk Research, 14(8), 995-1003. doi:10.1080/13669877.2011.571784
Geiger, V. (2019). Using mathematics as evidence supporting critical reasoning and enquiry in primary science classrooms. ZDM, 1-12.
Giroux, H. (1989). Schooling for democracy: Critical pedagogy in the modern age. London: Routledge.
Giroux, H. (2008). Education and the crisis of youth: Schooling and the promise of democracy. The Educational Forum, 73(1), 8-18. doi:10.1080/00131720802539523
Giroux, H. (2011). On critical pedagogy. New York: Continuum.
Giroux, H. (2013). America’s education deficit and the war on youth (Vol. 24). New York: Monthly Review Press.
Gray, D., & Bryce, T. (2006). Socio-scientific issues in science education: Implications for the professional development of teachers. Cambridge Journal of education, 36(2), 171-192.
Gray, D., Colucci-Gray, L., & Camino, E. (2012). Science, society and sustainability: Education and empowerment for an uncertain world. Routledge research in education: Routledge, Taylor & Francis Group.
Greer, B. (2009a). Estimating Iraqi deaths: A case study with implications for mathematics education. ZDM, 41(1-2), 105-116.
Greer, B. (2009b). What is mathematics education for? In P. Ernest, B. Greer, & B. Sriraman (Eds.), Critical issues in mathematics education (Vol. 6). Charlotte, N.C: Information Age Publishing.
Greer, B. (2018). STEM and the race between education and catastrophe. Paper presented at the MES10, Hyderabad, India.
Greer, B., & Skovsmose, O. (2012). Seeing the cage? The emergence of critical mathematics education. Opening the cage: Critique and politics of mathematics education, 1-19.
Gutiérrez, R. (2013). The sociopolitical turn in mathematics education. Journal for Research in Mathematics Education, 44(1), 37-68.
Gutstein, E. (2003). Teaching and learning mathematics for social justice in an urban, Latino school. Journal for Research in Mathematics Education, 34(1), 37-73. Retrieved from https://www.jstor.org/stable/30034699
Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for social justice. Oxford, UK: Routledge.
Gutstein, E. (2012). Mathematics as a weapon in the struggle. In O. Skovsmose, O. Skovsmose, & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education (pp. 23-48). Rotterdam: Sense Publishers.
Hana, G. M., Hansen, R., Johnsen-Høines, M., Lilland, I. E., & Rangnes, T. E. (2013). Learning conversation in mathematics practice shool-industry partnership as arena for teacher education. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry: Report on an ICMI-ICIAM-study (Vol. 16, pp. 147-156): Springer Science & Business Media.
Hansen, R., & Hana, G. M. (2012). But it is not possible to do this until… In G. H. Gunnarsdóttir, F. Hreinsdóttir, G. Pálsdóttir, M. Hannula, M. Hannula-Sormunen, E. Jablonka, U. T. V. Jankvist, A. Ryve, P. Valero, & K. Wæge (Eds.), Proceedings of Norma 11: The Sixth Nordic Conference on Mathematics Education in Reykjavìk, May 11.-14. 2011: University of Iceland Press.
Hauge, K. H. (2013). Bridging policy debates on risk assessments and mathematical literacy. Paper presented at the Eighth Congress of European Research in Mathematics Education. Retrieved from http://cerme8. metu. edu. tr/wgpapers/WG5/WG5_Hauge. pdf.
Hauge, K. H. (2016a). Matematikksamtaler om risiko. In R. Herheim & M. Johnsen-Høines (Eds.), Matematikksamtaler. Undervisning og læring – analytiske perspektiv. Bergen: Caaspar Forlag
Hauge, K. H. (2016b). Usikkerhet i temperaturprognoser. In T. E. Rangnes & H. Alrø (Eds.), Matematikklæring for fremtiden – Festskrift til Marit Johnsen-Høines (pp. 217-240). Bergen, Norway: Caspar forlag.
Hauge, K. H., & Barwell, R. (2015). Uncertainty in texts about climate change: A critical mathematics education perspective. Paper presented at the Proceedings of the Eighth International Mathematics Education and Society Conference, Portland, OR.
Hauge, K. H., & Barwell, R. (2017). Post-normal science and mathematics education in uncertain times: Educating future citizens for extended peer communities. Futures, 91, 25-34. doi:10.1016/j.futures.2016.11.013
Hauge, K. H., Sørngård, M. A., Vethe, T. I., Bringeland, T. A., Hagen, A. A., & Sumstad, M. S. (2015). Critical reflections on temperature change. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (pp. 1577-1583). Prague, Czech Republic: Charles University.
Herheim, R. (2012). Pupils collaborating in pairs at a computer in mathematics learning: Investigating verbal communication patterns and qualities. In: The University of Bergen.
Herheim, R., & Rangnes, T. E. (2015). Mathematical agency in a traffic safety project. Paper presented at the NORMA 14, Turku.
Herheim, R., & Rangnes, T. E. (2016). Kritisk-matematisk argumentasjon og agens [Critical-mathematical argumentation and agency]. In R. Herheim & M. Johnsen-Høines (Eds.), Matematikksamtaler: Undervisning og læring – analytiske perspektiv [Mathematical conversations: teaching and learning – analytical perspectives]. Bergen: Caspar forlag.
Hess, D. E. (2005). How do teachers’ political views influence teaching about controversial issues? Social Education, 69(1), 47-49.
Hess, D. E. (2009). Controversy in the classroom: The democratic power of discussion. New York: Routledge.
Hess, D. E., & McAvoy, P. (2009). To disclose or not to disclose: A controversial choice for teachers. In D. E. Hess (Ed.), Controversy in the classroom: The democratic power of discussion: Routledge.
Hess, D. E., & McAvoy, P. (2014). The political classroom: Evidence and ethics in democratic education. New York: Routledge.
Hulme, M. (2009). Why we disagree about climate change: Understanding controversy, inaction and opportunity. Cambridge, United Kingdom: Cambridge University.
Hulme, M. (2010). Claiming and adjudicating on mt Kilimanjaro’s shrinking glaciers: Guy Callendar, Al Gore and extended peer communities. Science as Culture, 19(3), 303-326.
Høines, M. J., Alrø, H., & Fosse, T. (2012). Læringssamtalen i matematikkfagets praksis. Bergen: Caspar.
Høines, M. J., & Herheim, R. (2016). Matematikksamtaler: Undervisning og læring – analytiske perspektiv. Bergen: Caspar forlag.
Jablonka, E. (2003). Mathematical literacy. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second International Handbook of Mathematics Education (pp. 75-102). Dordrecht: Springer Netherlands.
Jablonka, E. (2015). The evolvement of numeracy and mathematical literacy curricula and the construction of hierarchies of numerate or mathematically literate subjects. Mathematics Education, 47(4), 599-609.
Jorgensen, R., & Larkin, K. (2018). STEM education in the junior secondary. Singapore: Springer.
Jurdak, M. (2016). Learning and teaching real world problem solving in school mathematics. Switzerland: Springer.
Jurdak, M. (2018). Integrating the sociocultural and the sociopolitical in mathematics education. In M. Jurdak & R. Vithal (Eds.), Sociopolitical Dimensions of Mathematics Education (pp. 15-33). Cham, Switzerland: Springer.
Jurdak, M., & Vithal, R. (2018). Sociopolitical dimensions of mathematics education: From the margin to mainstream.
Kacerja, S., Rangnes, T., Herheim, R., Pohl, M., Lilland, I. E., & Hansen, R. (2017). Stimulating critical mathematical discussions in teacher education: use of indices such as the BMI as entry points. Nordic Studies in Mathematics Education, 22(4), 101-116.
Kennedy, N. S. (2018). Towards a Wider Perspective: Opening a Philosophical Space in the Mathematics Curriculum. In P. Ernest (Ed.), The Philosophy of Mathematics Education Today (pp. 309-320). Cham: Springer International Publishing.
Larkin, K., & Jorgensen, R. (2018). Introduction. In R. Jorgensen & K. Larkin (Eds.), STEM Education in the Junior Secondary: The State of Play (pp. 1-3). Singapore: Springer Singapore.
Lloyd, E. A. (2018). The role of “complex” empiricism in the debates about satellite data and climate models. In E. A. Lloyd & E. Winsberg (Eds.), Climate Modelling: Philosophical and Conceptual Issues (pp. 137-173). Cham, Switzerland: Springer International.
Lloyd, E. A., & Winsberg, E. (2018). Introduction. In E. A. Lloyd & E. Winsberg (Eds.), Climate Modelling: Philosophical and Conceptual Issues (pp. 1-28). Cham, Switzerland: Springer International Publishing.
Maaß, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of Mathematics in interdisciplinary STEM education. ZDM, 1-16.
Marshall, T. H. (1950). Citizenship and social class, and other essays. Cambridge, United Kingdom: University Press.
Mellin-Olsen, S. (1981). Instrumentalism as an educational concept. Educational Studies in Mathematics, 12(3), 351-367.
Mellin-Olsen, S. (1987). The politics of mathematics education (Vol. 4). Dordrecht, The Netherlands: Reidel.
Mellin-Olsen, S. (1991). Hvordan tenker lærere om matematikkundervisning? [How do teachers think about mathematics teaching?]. Bergen, Norway: Lærerhøgskolen.
Mellin-Olsen, S. (1993). Kunnskapsformidling: Virksomhetsteoretiske perspektiver (2 ed.). Nordås: Caspar.
Mellin-Olsen, S., & Lindén, N. (1996). Samtalen som forskningsmetode: Tekster om kvalitiv [i.e. kvalitativ] forskningsmetode som del av pedagogisk virksomhet. Landås, Norway: Caspar forlag.
Mukhopadhyay, S., & Greer, B. (2015). Cultural responsiveness and its role in humanizing mathematics education.
Oreskes, N. (2018). The scientific consensus on climate change: How do we know we’re not wrong? In E. A. Lloyd & E. Winsberg (Eds.), Climate Modelling: Philosophical and Conceptual Issues (pp. 31-64). Cham: Springer International Publishing.
Rangnes, T. E., & Herheim, R. (2019). Lærers tilrettelegging for elevers argumenter og agens [Teachers’ facilitation of students’ arguments and agency]. In K. M. R. Breivega & T. E. Rangnes (Eds.), Demokratisk danning i skolen. Tverrfaglige empiriske studier [Democratic bildung in school. Interdisciplinary empirical studies]. Oslo: Universitetsforlaget.
Ravetz, J. (2007). Post-normal science and the complexity of transitions towards sustainability. Ecological complexity, 3(4), 275-284.
Ravetz, J. (2011). Postnormal science and the maturing of the structural contradictions of modern European science. Futures, 43(2), 142-148. doi:10.1016/j.futures.2010.10.002
Ravn, O., & Skovsmose, O. (2019a). Beyond the Neutrality of Mathematics. In O. Ravn & O. Skovsmose (Eds.), History of Mathematics Education. Connecting Humans to Equations: A Reinterpretation of the Philosophy of Mathematics (1st ed. 2019. ed., pp. 151-162).
Ravn, O., & Skovsmose, O. (2019b). Connecting Humans to Equations A Reinterpretation of the Philosophy of Mathematics. Cham, Switzerland: Springer.
Sikunder, A. (2015). Critical mathematical competence for active citizenship within the modern world. Paper presented at the Mathematics education and society, Portland, Oregon.
Skemp, R. R. (2006). Relational Understanding and Instrumental Understanding. Mathematics Teaching in the Middle School, 12(2), 88-95.
Skovsmose, O. (1990). Reflective knowledge: Its relation to the mathematical modelling process. International Journal of Mathematical Education in Science and Technology, 21(5), 765-779. doi:10.1080/0020739900210512
Skovsmose, O. (1992). Democratic competence and reflective knowing in mathematics. For the Learning of Mathematics, 12(2), 2-11. Retrieved from http://www.jstor.org/stable/40248044
Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht: Springer.
Skovsmose, O. (1998). Linking mathematics education and democracy: Citizenship, mathematical archaeology, mathemacy and deliberative interaction. ZDM, 30(6), 195-203.
Skovsmose, O. (2000). Aporism and critical mathematics education. For the Learning of Mathematics, 20(1), 2-8. Retrieved from http://www.jstor.org/stable/40248312
Skovsmose, O. (2006). Research, practice, uncertainty and responsibility. Journal of Mathematical Behavior, 25(4), 267-284.
Skovsmose, O. (2008a). Mathematical literacy and globalisation. In B. Atweh, A. C. Barton, M. Borba, N. Gough, C. Keitel, C. Vistro-Yu, & R. Vithal (Eds.), Internationalisation and globalisation in mathematics and science education (pp. 3-18). Dordrecht: Springer.
Skovsmose, O. (2008b). Mathematics education in a knowledge market: Developing functional and critical competencies. In E. de Freitas & K. Nolan (Eds.), Opening the Research Text (pp. 159-188). US: Springer.
Skovsmose, O. (2011a). Critique, generativity and imagination. For the Learning of Mathematics, 31(3), 19-23.
Skovsmose, O. (2011b). Landscapes of investigation. In O. Skovsmose (Ed.), An Invitation to Critical Mathematics Education (pp. 31-48). Rotterdam: Sense Publishers.
Skovsmose, O. (2012a). An invitation to critical mathematics education. Rotterdam, The Netherlands: Sense.
Skovsmose, O. (2012b). Towards a critical mathematics education research programme? In O. Skovsmose & B. Greer (Eds.), Opening the Cage (pp. 343-368). Rotterdam: Sense Publishers.
Skovsmose, O. (2014a). Critical mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 116-120). Dordrecht: Springer Netherlands.
Skovsmose, O. (2014b). Critique as uncertainty. Charlotte, NC: IAP.
Skovsmose, O. (2015). An intentionality interpretation of meaning in mathematics education. Educational Studies in Mathematics, 1-14. doi:10.1007/s10649-015-9644-9
Skovsmose, O. (2016). Critical mathematics education: Concerns, notions and future. In P. Ernest, O. Skovsmose, J. P. van Bendegem, M. Bicudo, R. Miarka, L. Kvasz, & R. Moeller (Eds.), The Philosophy of Mathematics Education (pp. 1-26). Dordrecht: Springer.
Skovsmose, O., & Greer, B. (2012). Opening the cage? Critical agency in the face of uncertainty. In O. Skovsmose & B. Greer (Eds.), Opening the Cage (pp. 369-385). Rotterdam: Sense.
Skovsmose, O., Valero, P., & Christensen, O. R. (2009). University science and mathematics education in transition: Springer.
Sriraman, B., & English, L. D. (2010). Surveying Theories and Philosophies of Mathematics Education. In B. Sriraman & L. D. English (Eds.), Theories of Mathematics Education: Seeking New Frontiers (pp. 7-32). Dordrecht: Springer.
Sriraman, B., Ernest, P., & Greer, B. (2009). Critical issues in mathematics education: Information Age Publishing, Incorporated.
Sriraman, B., Roscoe, M., & English, L. D. (2010). Politicizing mathematics education: Has politics gone too far? Or not far enough? In B. Sriraman & L. English (Eds.), Theories of Mathematics Education (pp. 621-638). Berlin: Springer
Steffensen, L., & Rangnes, T. E. (2019). Climate change controversies in the mathematics classroom.
Valero, P. (2009). What has power got to do with mathematics education. In P. Ernest, B. Greer, & B. Sriraman (Eds.), Critical issues in mathematics education (pp. 237-254). Charlotte, NC, USA: Information Age Publishing.
Valero, P., Andrade-Molina, M., & Montecino, A. (2015). The political aspect in mathematics education: From critical mathematics education to cultural politics of mathematics education. Revista Latinoamericana De Investigacion En Matematica Educativa-Relime, 18(3), 287-300. Retrieved from <Go to ISI>://WOS:000365632400002
Valero, P., & Stentoft, D. (2010). The” post” move of critical mathematics education.
Valero, P., & Zevenbergen, R. (2004). Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology (Vol. 35): Springer Science & Business Media.
Vithal, R. (2003). In search of a pedagogy of conflict and dialogue for mathematics education (Vol. 32). Dordrecht, The Netherlands: Kluwer Academic.
Vithal, R. (2004). Methodological challenges for mathematics education research from a critical perspective. In P. Valero & R. Zevenbergen (Eds.), Researching the Socio-Political Dimensions of Mathematics Education: Issues of Power in Theory and Methodology (pp. 227-248). Boston, MA: Springer US.
Vithal, R. (2008). An analytical framework for mathematics teacher education from a critical perspective. Perspectives in Education, 26(2), 29-40. Retrieved from <Go to ISI>://WOS:000259381800004
Vithal, R., & Skovsmose, O. (2012). Mathematics education, democracy and development: A view of the landscape. pythagoras, 33(2), 1.
Wolfmeyer, M. (2013). STEM, meet ecojustice. Green Theory & Praxis Journal, 7(1), 32-46.
Wolfmeyer, M. (2018). Teaching EcoJustice in STEM Methods Courses. Issues in Teacher Education, 27(2), 83-95.
Wolfmeyer, M., & Lupinacci, J. (2017). (Re) considering STEM Education: Interrupting an Omnipresent Discourse. Critical Education, 8(15).
Wolfmeyer, M., Lupinacci, J., & Chesky, N. (2017). Three Ontologies of STEM Education? An Apolitical Curricular Trend, Eurocentric Economic Policy, and Discursive Episteme. Critical Education, 8(15), 68-81. Retrieved from http://ojs.library.ubc.ca/index.php/criticaled/article/view/186337
Wolfmeyer, M., Lupinacci, J., & Chesky, N. (2018). Inserting Critical Mathematics into STEM Education. In R. Jorgensen & K. Larkin (Eds.), STEM Education in the Junior Secondary: The State of Play (pp. 273-294). Singapore: Springer Singapore.
Yasukawa, K. (2007). An agenda for mathematics education in the decade of education for sustainable development. Nordic Studies in Mathematics Education, 12 (3), 7–24.
Yasukawa, K., & Brown, T. (2012). Bringing critical mathematics to work: But can numbers mobilise. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education (Vol. 23). Rotterdam: Sense.
Yasukawa, K., Skovsmose, O., & Ravn, O. (2012). Shaping and being shaped by mathematics: Examining a technology of rationality. In O. Skovsmose & B. Greer (Eds.), Opening the Cage (pp. 265-283). Rotterdam: Sense.